102 research outputs found

    A Radiobrominated Tyrosine Kinase Inhibitor for EGFR with L858R/T790M Mutations in Lung Carcinoma.

    Get PDF
    Activating double mutations L858R/T790M in the epidermal growth factor receptor(EGFR) region are often observed as the cause of resistance to tyrosine kinase inhibitors (TKIs). Third-generation EGFR-TKIs, such as osimertinib and rociletinib (CO-1686), was developed to target such resistance mutations. The detection of activating L858R/T790M mutations is necessary to select sensitive patients for therapy. Hence, we aimed to develop novel radiobromine-labeled CO-1686 as apositron emission tomography (PET) imaging probe for detecting EGFR L858R/T790M mutations. Nonradioactive brominated-CO1686 (BrCO1686) was synthesized by the condensation of N-(3-[{2-chloro-5-(trifluoromethyl)pyrimidin-4-yl}amino]-5-bromophenyl) acrylamide with the corresponding substituted 1-(4-[4-amino-3-methoxyphenyl]piperazine-1-yl)ethan-1-one. The radiobrominated [77Br]BrCO1686 was prepared through bromodestannylation of the corresponding tributylstannylated precursor with [77Br]bromide and N-chlorosuccinimide. Although we aimed to provide a novel PET imaging probe, 77Br was used as an alternative radionuclide for 76Br. We fundamentally evaluated the potency of [77Br]BrCO1686 as a molecular probe for detecting EGFR L858R/T790M using human non-small-cell lung cancer (NSCLC) cell lines: H1975 (EGFR L858R/T790M), H3255 (EGFR L858R), and H441 (wild-type EGFR). The BrCO1686 showed high cytotoxicity toward H1975 (IC50 0.18 0.06 M) comparable to that of CO-1686 (IC50 0.14 0.05 M). In cell uptake experiments, the level of accumulation of [77Br]BrCO1686 in H1975 was significantly higher than those in H3255 and H441 upon 4 h of incubation. The radioactivity of [77Br]BrCO1686 (136.3% dose/mg protein) was significantly reduced to 56.9% dose/mg protein by the pretreatment with an excess CO-1686. These results indicate that the binding site of the radiotracers should be identical to that of CO-1686. The in vivo accumulation of radioactivity of [77Br]BrCO1686 in H1975 tumor (4.51 0.17) was higher than that in H441 tumor (3.71 0.13) 1 h postinjection. Our results suggested that [77Br]BrCO1686 has specificity toward NSCLC cells with double mutations EGFR L858R/T790M compared to those in EGFR L858R and wild-type EGFR. However, the in vivo accumulation of radioactivity in the targeted tumor needs to be optimized by structural modification

    Doping Dependence of the Electronic Structure of Ba_{1-x}K_{x}BiO_{3} Studied by X-Ray Absorption Spectroscopy

    Get PDF
    We have performed x-ray absorption spectroscopy (XAS) and x-ray photoemission spectroscopy (XPS) studies of single crystal Ba_{1-x}K_{x}BiO_{3} (BKBO) covering the whole composition range 0x0.600 \leq x \leq 0.60. Several features in the oxygen 1\textit{s} core XAS spectra show systematic changes with xx. Spectral weight around the absorption threshold increases with hole doping and shows a finite jump between x=0.30x=0.30 and 0.40, which signals the metal-insulator transition. We have compared the obtained results with band-structure calculations. Comparison with the XAS results of BaPb_{1-x}Bi_{x}O_{3} has revealed quite different doping dependences between BKBO and BPBO. We have also observed systematic core-level shifts in the XPS spectra as well as in the XAS threshold as functions of xx, which can be attributed to a chemical potential shift accompanying the hole doping. The observed chemical potential shift is found to be slower than that predicted by the rigid band model based on the band-structure calculations.Comment: 8 pages, 8 figures include

    Phosphodiesterase-III Inhibitor Prevents Hemorrhagic Transformation Induced by Focal Cerebral Ischemia in Mice Treated with tPA

    Get PDF
    The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy, spectroscopy), histological and neurobehavioral measures to assess the effects of the treatment at 18 h and 7 days after the reperfusion. To further investigate the mechanism of cilostazol to beneficial effect, we also performed an in vitro study with tPA and a phosphodiesterase-III inhibitor in human brain microvascular endothelial cells, pericytes, and astrocytes. Combination therapy with tPA plus cilostazol prevented development of hemorrhagic transformation, reduced brain edema, prevented endothelial injury via reduction MMP-9 activity, and prevented the blood-brain barrier opening by inhibiting decreased claudin-5 expression. These changes significantly reduced the morbidity and mortality at 18 h and 7 days after the reperfusion. Also, the administration of both drugs prevented injury to brain human endothelial cells and human brain pericytes. The present study indicates that a phosphodiesterase-III inhibitor prevents the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA

    Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus

    Get PDF
    Cohesin is a chromatin-associated protein complex that mediates sister chromatid cohesion by connecting replicated DNA molecules. Cohesin also has important roles in gene regulation, but the mechanistic basis of this function is poorly understood. In mammalian genomes, cohesin co-localizes with CCCTC binding factor (CTCF), a zinc finger protein implicated in multiple gene regulatory events. At the imprinted IGF2-H19 locus, CTCF plays an important role in organizing allele-specific higher-order chromatin conformation and functions as an enhancer blocking transcriptional insulator. Here we have used chromosome conformation capture (3C) assays and RNAi-mediated depletion of cohesin to address whether cohesin affects higher order chromatin conformation at the IGF2-H19 locus in human cells. Our data show that cohesin has a critical role in maintaining CTCF-mediated chromatin conformation at the locus and that disruption of this conformation coincides with changes in IGF2 expression. We show that the cohesin-dependent, higher-order chromatin conformation of the locus exists in both G1 and G2 phases of the cell cycle and is therefore independent of cohesin's function in sister chromatid cohesion. We propose that cohesin can mediate interactions between DNA molecules in cis to insulate genes through the formation of chromatin loops, analogous to the cohesin mediated interaction with sister chromatids in trans to establish cohesion

    Targeted Sister Chromatid Cohesion by Sir2

    Get PDF
    The protein complex known as cohesin binds pericentric regions and other sites of eukaryotic genomes to mediate cohesion of sister chromatids. In budding yeast Saccharomyces cerevisiae, cohesin also binds silent chromatin, a repressive chromatin structure that functionally resembles heterochromatin of higher eukaryotes. We developed a protein-targeting assay to investigate the mechanistic basis for cohesion of silent chromatin domains. Individual silencing factors were tethered to sites where pairing of sister chromatids could be evaluated by fluorescence microscopy. We report that the evolutionarily conserved Sir2 histone deacetylase, an essential silent chromatin component, was both necessary and sufficient for cohesion. The cohesin genes were required, but the Sir2 deacetylase activity and other silencing factors were not. Binding of cohesin to silent chromatin was achieved with a small carboxyl terminal fragment of Sir2. Taken together, these data define a unique role for Sir2 in cohesion of silent chromatin that is distinct from the enzyme's role as a histone deacetylase

    Myocardial energy depletion and dynamic systolic dysfunction in hypertrophic cardiomyopathy

    Get PDF
    Evidence indicates that anatomical and physiological phenotypes of hypertrophic cardiomyopathy (HCM) stem from genetically mediated, inefficient cardiomyocyte energy utilization, and subsequent cellular energy depletion. However, HCM often presents clinically with normal left ventricular (LV) systolic function or hyperkinesia. If energy inefficiency is a feature of HCM, why is it not manifest as resting LV systolic dysfunction? In this Perspectives article, we focus on an idiosyncratic form of reversible systolic dysfunction provoked by LV obstruction that we have previously termed the 'lobster claw abnormality' — a mid-systolic drop in LV Doppler ejection velocities. In obstructive HCM, this drop explains the mid-systolic closure of the aortic valve, the bifid aortic pressure trace, and why patients cannot increase stroke volume with exercise. This phenomenon is characteristic of a broader phenomenon in HCM that we have termed dynamic systolic dysfunction. It underlies the development of apical aneurysms, and rare occurrence of cardiogenic shock after obstruction. We posit that dynamic systolic dysfunction is a manifestation of inefficient cardiomyocyte energy utilization. Systolic dysfunction is clinically inapparent at rest; however, it becomes overt through the mechanism of afterload mismatch when LV outflow obstruction is imposed. Energetic insufficiency is also present in nonobstructive HCM. This paradigm might suggest novel therapies. Other pathways that might be central to HCM, such as myofilament Ca2+ hypersensitivity, and enhanced late Na+ current, are discussed

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis
    corecore